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ABSTRACT

Simultaneous Location and Mapping (SLAM) is a method used to numerically solve the
problem of extracting map and location in an unknown environment for Mobile robot navi-
gation. It has been widely popular due to its wide range of applications in any sort of robot
motion in an unexplored environment. Various approaches have been developed for tackling
this problem like probabilistic approach, feature based, graph based and so on. We are using
grid-map based approach derived from Tiny Slam that is enhanced with a layer of particle
filter over it. The approach resulted in a improved map with less orientation errors and can
encompass even greater robot motion speed. The robot motion however doesn’t encompass
any control measures resulting in errors in map updates due to inertial jerk.
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1. INTRODUCTION

1.1. Background

Automation is the process of using physical machines, computer software and other tech-
nologies to perform tasks that are usually done by humans. Autonomous motion for robots
nowadays has become a cardinal factor in robotics since the field of robotics has been grow-
ing tremendously and enhancements in what the robot can do is the main concern in fields of
robotics today. Automation in robots is the technology that allows anyone today to configure
computer software, or a robot to emulate and integrate the actions of a human interacting
within digital systems to execute a business process. An automated robot has to be able to
sense the nearby environments and be able to react accordingly. The problem of mobile robot
automation includes various sub-problems of positioning, planning and motion implemen-
tation. Positioning is a crucial part in the overall navigation process and means identifying
one’s location in the surrounding. However such an approach requires an initial knowledge
of the environment which is not always practically feasible. As a sophisticated solution
SLAM is implemented in which the knowledge of the environment and robots position both
are simultaneously updated from the robots measurement itself.

Taking SLAM approach to the positioning problem, the path-planning and motion im-
plementation follow based on the information extracted from the positioning and thus the
robot can move without collision in different unknown environments. It is the computational
problem of constructing or updating a map of an unknown environment while simultane-
ously keeping track of an agent’s location within it. SLAM has been the subject of technical
research for many years. But with vast improvements in computer processing speed and the
availability of low-cost sensors such as cameras and laser range finders, SLAM is now used
for practical applications in a growing number of fields.

One of characteristic of SLAM is that it is a continuous and discrete problem. Robot
poses and object or landmark locations are continuous aspects of the SLAM problem. While
sensing the environment continuously, a discrete relation between detected objects and newly
detected ones needs to be made. This relation is known by correspondence and helps the
robot to detect if it has been in the same location. With SLAM, a mobile robot is establishing
a discrete relation between newly and previously detected objects.

SLAM methods can be classified according to the type of map that generated. The map
generated can be a landmark based map or a volumetric map (also known as a grid map).
Some of the steps involved in Landmark based SLAM algorithm follows are Landmark Ex-
traction, Data association, State estimation, State update and Landmark update. Landmarks
are features which can easily be re-observed and distinguished from the environment. These
features are used by the robot to find out it’s actual position and orientation in the given
environment also termed as self localize.

The mapping algorithm that is generally used is the occupancy grid mapping which we
have used in our project. The algorithm can map any arbitrary environment by dividing it
into a finite number of grid cells. Grid maps use arrays (typically square or hexagonal) of
discretized cells to represent a topological world, and make inferences about which cells are
occupied. Typically the cells are assumed to be statistically independent in order to simplify
computation. Under such assumption, P (mt|xt,mt−1, ot) are set to 1 if the new map’s cells
are consistent with the observation ot at location xt and 0 if inconsistent.

SLAM is useful in many other applications such as navigating a fleet of mobile robots to
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arrange shelves in a warehouse, parking a self-driving car in an empty spot, or delivering a
package by navigating a drone in an unknown environment. Many platforms like MATLAB,
Simulink, ROS provide SLAM algorithms, functions, and analysis tools to develop various
applications. We can also implement simultaneous localization and mapping along with
other tasks such as sensor fusion, object tracking, path planning and path following.

Figure 1: Map generated using Landmark Based SLAM

Figure 2: Map generated using grid map based SLAM
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1.2. Objectives

1. To estimate the map and the object pose in that map for a different environments.

2. To understand and illustrate the concepts behind SLAM

3. To simulate the designed system and visualize the results.

1.3. Problem Statement

SLAM has been a hot topic under mobile robot motion finding its applications under au-
tonomous vehicles, service robots, delivery drones and so on. SLAM proposes following
challenges:

1. Localisation problem

2. Mapping problem

3. Simultaneous map and position approximation problem.

4. Test environment setup

Localisation poses the issue of finding the x,y position and orientation in a given map for
a measurement. Mapping is for constructing a map and obstacles for a robot position far a
given measurement. SLAM introduces iterative approximation of position and map at a time
T taking the position and map at the time T-1. The uncertainty in the measurement is handled
using normal probabilistic models of position and map estimate.
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2. LITERATURE REVIEW

Mobile Robots are capable of moving in the surrounding and thus have found various appli-
cation in various fields today among which Unmanned Ground Vehicles, Unmanned Aerial
Vehicles, Autonomous underwater vehicles and Polar robots are the major categories. Going
through various developments, the mobile robots have come to the phase of Autonomous
Mobile Robots. The general problem of mobile robot navigation was summarized into three
questions: “Where am I?,” “Where am I going?,” and “How should I get there?.” in [1].

The question of ”Where am I?” addresses the localization problem of autonomous robot
control.Localization involves the task of identifying the robot position with respect to its en-
vironment.In a typical robot localization scenario, the robot uses the sensor information and
already available environment map. This approach takes in noisy sensor data that give the
measured pose of the robot in the environment and applies various filtering approaches to find
the estimate of the actual pose of the robot and solve the localization problem [2]. Bayesian
filtering can be employed as a powerful technique to address this problem [3]. However,
the constraint of already knowing the map weighs heavy on the this approach to the prob-
lem.The other approach overcomes this constraint in the sense it builds the map and localizes
itself in it simultaneously and hence, called SLAM. The classical age of SLAM(1986-2004)
witnessed the probabilistic approaches to SLAM among which were EKF and maximum
likelihood estimation. The later period, algorithmic-analysis age (2004-2015), was much
involved with the study of SLAM and its fundamental properties like observability, conver-
gence and consistency itself [4]. Presently much sophisticated approaches to this problem
exist such as Visual-optometry [5], Multi robot SLAM [6], Visual place recognition [7] and
so on. A simpler yet powerful approach to this problem is the GraphSLAM demonstrated in
[8].
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3. METHODOLOGY

3.1. System Block Diagram

Figure 3: System Diagram

3.2. Laser Sensor

LIDAR is a method of calculating the distance of the target on which the high frequency
laser pulses strike, based on the time required to return to the source from the target. A
LIDAR system in total comprises of Laser Transmitter, Optical receiver, Signal detection
and Data Acquisition and Control.LIDAR sends rapid pulses of laser light to the surface and
calculates the time it requires to return to the source. This is used by the robot to make a 2d
representation of the target. The lidar we have used is LDS-01 which is one of the affordable
360 lidar which is capable of collecting data from 360 degree surrounding which can be used
for SLAM. It has USB interface so it is easily compatible with computers.
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Table 1: LDS-01 Parameters

Angular Range 360◦

Distance Range 120-3500 mm
Angular Resolution 1◦

Scan Rate 10 Hz

Figure 4: LDS-01

3.2.1. Laser Scan Data Processing

The laser range finder LDS-01 sends laser scan data to the turtlebot. The laser scan data is
in the form of a sequence of numbers which denote the distance to the obstacle from the
laser sensor at a given angle. The LDS-01 has an angular range of 360◦ with a resolution
of 1 degrees. Therefore there are a total of 360 data points from the laser. If z is the list of
distances measured by the laser range sensor, then,

z = [z0, z1, ...., z359]

where, z0, z1, .. etc are the individual range readings. The first distance measurement z0
is taken at an angle of −180◦, z1 at an angle of −179◦ and so on. Then, the Cartesian
co-ordinates of the sensor reading is given by:

xk = zk cos θk

yk = zk sin θk

where, θk is the angle at which the measurement zk was taken. These co-ordinates are with
respect to the robot’s frame of reference. As shown in figure 5, the vectors i and j and
the point P0 make up the global (map) frame of reference, while (v1,v2, P1) make up the
robot’s frame of reference. The transformation from the robots frame of reference to the
global frame of reference can be carried out by the following matrix:
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Figure 5: Map frame and Robot Frame

T =
[
xk yk 1

]  cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0
xp yp 1

 i
j
P0

 (1)

which gives,

x = xk cos(θ)− yk sin(θ) + xp

y = xk sin(θ) + yk cos(θ) + yp

Here, (xp, yp, θ) is the pose of robot in the global frame of reference as shown in figure 5 and
x, y) is the coordinate of the point (xk, yk) in the global reference frame.

3.3. Robot Description

In order to build the map the LIDAR sensor must be moved in the given environment. For that
purpose we have used a differential wheeled robot with two wheels connected with motors
and a free turning wheel. For the sensing environment.We have used Laser Sensor 360 laser
distance sensor LDS-01. For simulation purposes in gazebo we have used the ROS Turtlebot
3 package which has inbuilt LDS-01 sensor and well documented too. For the differential
wheeled robot to move with given velocity we use kinematics which is explained below:
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Figure 6: Kinematics for differential wheel drive

The kinematics for the two wheel differential drive is:xnewynew
θ

 = ∆t

cos(θ) 0
sin(θ) 0

0 1

[v
w

]
(2)

where,

v = (Vr + Vl)/2

w = (Vr − Vl)/L
Vr = r ∗ wr
Vl = r ∗ wl
wr = Velocity of right wheel
r = radius of the wheel
wl = Velocity of left wheel
v = velocity of the robot

Finally,new position xnew and ynew is:

xnew = v cos(θ)∆t

ynew = v sin(θ)∆t

θ = w∆t

3.4. SLAM

Among the many SLAM algorithms that use this approach, we have chosen the tiny SLAM
algorithm for study in our project. The Tiny SLAM [9] is a SLAM method for generating grid
maps. This particular SLAM method is well known for its simplicity and its quality given
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the simplicity. The SLAM algorithm is very comprehensive using only simplistic models for
sensors, robot motions and its mapping technique. Additionally, the source code for Tiny
SLAM was easily available and was well documented in the Breezy SLAM repository. Due
to these features, we selected Tiny SLAM as our SLAM algorithm of interest during this
project. Besides this, various improvements have also been proposed to improve the existing
tiny SLAM algorithm [10]. In general the tiny SLAM algorithm can be broken down into
following simple steps:

1. Calculate the best possible position of the robot using the available laser range data

2. Update the map according to the laser range data and the best estimated position that
was calculated in step 1.

In Breezy SLAM, the robot position is represented by a single position which represents the
most likely pose of the robot given the previous poses and the map posterior is represented
by a single occupancy grid map which is the map generated from the most likely positions of
the robot using the corresponding laser scans. Also, in our project, we have decided to make
certain modifications to the tiny SLAM algorithm. Currently, we have added a particle filter
to the existing algorithm and visualized the results in ROS.

3.4.1. Particle Filter

Particle Filter uses a set of particles to represent the posterior distribution of a model in a
process and filter out the particles as the number of observations increase, leaving out the
particles with the highest probability of survival. In our project we used the particle filter for
calculating the possible location of the robot in the given map, observing the laser scan data
and filtering out the particles by calculating its importance weight.

At the beginning a list of particles is defined. Each particle has the necessary attributes
like 2D position, orientation (θ) weight and their own individual map. The position of par-
ticles are then updated using the Hill Climbing algorithm ( described in 4 ), which uses
random normal distribution and returns the best estimated position of the particles respective
to scan data. After that the weight of each particle was calculated using the sensor model as
described in 3. The calculated weight of the particles are then normalized and re-sampled.
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Figure 1: True position of the Robot Figure 2: Particles representing the position
of the robot

Figure 3: The particles with their weight
represented, larger size represents larger
weight.

Figure 4: Movement of the robot

Figure 5: Movement of the robot causing a
change in the position of the particles

Figure 7: Basic Working of Particle Filter

The algorithm for the implementation of particle filter is given in algorithm 1.

Algorithm 1 Particle Filter
Input: Xt list of particles, Wt weight of particles, M Number of particles
Output: X̄t list of new generation of particles

1: procedure PARTICLE FILTER

2: X̄t = Xt = φ
3: for n = 1 to M do
4: X

[n]
t = HILL CLIMBING(x,m, z)

5: W
[n]
t = SENSOR MODEL(z,x,m)

6: end for
7: RESAMPLER (X

[n]
t ,W

[n]
t )

8: end procedure

10



The re-sampling step 5 of the particle filter given in algorithm 1 is done using low vari-
ance re-sampling as described in [3]. The algorithm is presented in 2.

Algorithm 2 Low Variance Re-sampling
Input: Xt list of particles, Wt weight of particles x pose and orientation, m map, z

Reading from laser scan
Output: X̄t list of new generation of particles

1: procedure RESAMPLER(Xt,Wt)
2: X̄t = φ
3: M = len( Xt )
4: r = rand(0,M−1)

5: c = W
[0]
t

6: i = 0
7: for m = 0 to M-1 do
8: u = r +m/M
9: while u > c do

10: i = (i+ 1) mod M

11: c = c+W
[i]
t

12: end while
13: Add Xt[i] to X̄t

14: end for
15: return X̄t

16: end procedure

3.4.2. Occupancy Grid Map

Tiny SLAM represents the map as an occupancy grid map. The occupancy grid map rep-
resents the continuous real-world map as a field of random variables, arranged in an evenly
spaced grid where each random variable determines the binary probability that the corre-
sponding grid is occupied or not occupied. Mathematically, in occupancy grid maps, the
map m is represented as a collection of grid cells with occupancy probabilities denoted by
random variablemi. Here, each grid cell has a probability of being occupied or not occupied.
In Tiny SLAM, the grid cells are given by the probability of being not occupied, i.e,

P (mi) = P (miis not occupied )

Occupancy Grid map makes the following assumptions about the world:

1. Each cell mi is independent of all the other cells.

2. The world is static i.e, the map (or the environment) does not change with time

3. Each cell is represented by a binary state, i.e, it is either occupied or not occupied.

Due to these assumptions, the calculation of the posterior of the maps p(m|x, z) is now
reduced to the calculation of the posterior over each grid cell i.e., p(mi|x, z).
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Initially, all the grid cells are initialized with a probability of 0.5 which states that the
grid cell has equal chances of being occupied or of being free. Once the sensor data is read,
these probabilities are then updated using the map update described further below.

0.9 0.8 0.9

0.5 0.2 0.2

0.1 0.2 0.2

Figure 8: Occupancy Grid Map

As shown in figure 8, the resulting map of the grid with probability values on the left is
given in the right.

3.4.3. Sensor Model

The sensor model or the observation model, denoted by p(zt|xt,m), is the likelihood of
getting a certain observation given our position and the current state of the map. In simpler
terms, it tells us the probability of getting a certain sensor reading (e,g, measuring a certain
distance from a laser range sensor) given our current pose and the map. The sensor model
is used to calculate the importance weight of our particles as well as to perform the hill
climbing search for the best possible robot position. Tiny SLAM uses a relatively simple
sensor model, where each laser range data is assumed independent of other laser range data.
The algorithm for the sensor model is as shown below:

Algorithm 3 Calculation of the likelihood of sensor model
Input: zt Reading from laser scan, mt map
Output: xt position and orientation

1: procedure SENSOR MODEL( zt, xt, mt)
2: sum = 0
3: n = 0
4: for each reading zkt in zt do
5: if zkt is finite then
6: Calculate the map coordinates (x,y) of reading zkt using the pose xt

7: value = occupancy probability of the grid cell at position (x,y)
8: sum = sum+ value
9: n = n+ 1

10: end if
11: end for
12: if n > 0 then
13: return (sum ∗ 1024)/n
14: else
15: return -1
16: end if
17: end procedure
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The calculation of map coordinates of a reading zkt is done by using the transformation
described in section 3.2.1.

3.4.4. Best Estimate of Particle Position

Tiny SLAM uses the hill climbing approach in order to search for the best possible position
that matches the current laser scan data. We use a random hill climbing approach which is
described as in algorithm 4. Here, the algorithm iterates max number of times and returns
the position for which the sensor model gives the least value. The robot poses are searched
randomly by using a normal distribution. The parameters σxy, σθ can be used to control the
variance of the search. Higher value of these parameters lead to a much larger search space.

Algorithm 4 Calculation of the the best estimated position using Hill Climbing
Input: xt−1 Previous position and orientation

zt Current reading, mt map
max Number of iterations

Output: Best estimated position of the robot
1: procedure HILL CLIMBING(xt−1, zt,mt,max )
2: iterations = 0
3: best = sensor model(zt,xt−1,mt)
4: current = 0
5: pose = xt−1
6: while iterations < max do
7: x

′
= random normal(pose.x, σxy)

8: y
′
= random normal(pose.y, σxy)

9: θ
′
= random normal(pose.θ, σθ)

10: current = sensor model(zt,x
′,mt)

11: if current 6= −1 and current < best then
12: current = best
13: pose = (x′, y′, θ′)
14: end if
15: iterations = iterations+ 1
16: end while
17: return pose
18: end procedure

Here, the random normal(µ, σ) is a function which draws a sample from the normal
distribution given by N (µ, σ).

3.4.5. Map Update

Each particle has its individual map and the map is updated after each scan. At first each
particle is assigned with it’s individual map and a map handle is assigned to the particles
instead of the map itself. A map is divided into a number of cells known as grid cells and the
size of each grid cell is given by (size of map)/(number of cells). This ratio is also known
as the resolution of the map and the map is updated on the basis of probability of occupancy

13



of each grid cell. More the probability of the cell occupancy, higher the chances of that
cell being free. To perform the map update, first the updated particle position is taken by
using the most recent scan. The line from the position of the particle to the (x, y) position
of the scan gives the line through which the laser traverses. The, we use the Bresenham’s
Line Algorithm to generate all the grid cells that the line passes through. The Bresenham
algorithm is an incremental scan conversion algorithm. It is an efficient algorithm to render
a line with pixels. It is commonly used to draw line primitives in a bitmap image, as it uses
only integer addition, subtraction and bit shifting, all of which are very cheap operations. It
is therefore a very efficient method. The Bresenham’s line algorithm is given in algorithm 5.
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Algorithm 5 Bresenham’s Line Algorithm
Input: (x1, y1) Starting coordinate of line, (x2, y2) Ending coordinate of line
Output: X list of (x,y) grid cells that contains the line,

1: procedure BLA((x1, y1), (x2, y2))
2: dx = |x2 − x1|
3: dy = |y2 − y1|
4: incx = (x2 − x1)/dx
5: incy = (y2 − y1)/dy
6: x = x1, y = y1
7: Add (x, y) to X
8: if dx > dy then
9: p = 2 ∗ dy − dx

10: for i = 1todx do
11: if p < 0 then
12: p = p+ 2 ∗ dy
13: x = x+ incx
14: else
15: p = p+ 2 ∗ (dy − dx)
16: x = x+ incx
17: y = y + incy
18: end if
19: Add (x, y) to X
20: end for
21: else
22: p = 2 ∗ dx− dy
23: for i = 1tody do
24: if p < 0 then
25: p = p+ 2 ∗ dx
26: y = y + incy
27: else
28: p = p+ 2 ∗ (dx− dy)
29: x = x+ incx
30: y = y + incy
31: end if
32: Add (x, y) to X
33: end for
34: return X
35: end if
36: end procedure
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Figure 9: Bresenham’s Line Algorithm converting line to corresponding pixels.

Then, for each grid cell, the probability of a grid cell being occupied is updated by using
the formula:

P (mk+1
i ) = (1− α) ∗ P (mi

k) + α ∗ P (mi|z)

where,

P (mk+1
k ) = New probability value of occupancy in the grid cell i

P (mk
k) = Current probability value of occupancy in the grid cell i
α = Belief in the new value of the sensor reading

P (mi|z) = Probability of grid cell i being occupied given reading z

Here the value of α allows us to set the priority for replacing the new probability with the
older probability value of the grid cell.The value lies between 0 and 1. The expression
P (mi|z) is known as the inverse sensor model. The value of the expression depends on the
distance of the grid cell from the reading of the sensor.
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Figure 10: P (m|z), i.e, the probability of the grid cells that are intersected by the laser scan
versus the distance from the scan measurement.

Here, the figure shows the probability of the grid cell not being occupied varying with
the distance given by the laser scan.

3.5. Simulation

SLAM as we have devised in this project requires laser-scan data coming from the laser
range finder sensor or LIDAR attached to the mobile robot. The laser-scan data corresponds
to the environment of the mobile robot and is used to develop the occupancy grid map of the
environment and localize the mobile robot in it. In practical applications, the laser data is
received form LIDAR of the mobile robot and the SLAM processing is done resulting in the
occupancy grid map. The obtained occupancy grid map gives the location of obstacles in the
environment and that is used by path-planning algorithms to find the appropriate path from
the robot’s current position to the specified goal position. However, as for our project we
require the laser-data and generate the occupancy grid map. So we selected Robot Operating
System(ROS) as our platform to simulate the mobile robot in an environment and gather
the laser scan data and also to visualize the output i.e. occupancy grid map and the particle
position in it. For the world simulation we use a 3D simulation package called Gazebo and
readily available turtlebot 3 packages as our environment. The real time visualization of
output is done using the package Rviz.
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3.5.1. ROS Framework

The essential components that constitute the working of ROS are ROS master, Nodes, Topics
and Messages. ROS nodes are the processing components of ROS that perform the required
computations. At a time there can be multiple nodes running in a ROS environment, each
performing different types of computations. The nodes are interwoven in that the output of
one computation can be the input of another. Hence, the nodes work as a system and the
passing of the information is done using messages and topics. Topics are named buses for
the message exchange between nodes. Thus actually a communicating node does not know
the other node it is communicating with, instead subscribes to a topic that it requires. The
message is a simple data structure consisting of the data that needs to be exchanged. A master
is a special node in the framework that handles naming and registration of other nodes. These
components of the ROS system are bundled together and distributed as packages and ROS
provides lots of standard packages like Gazebo and Rviz however the user can also create
own package to run a custom node.

3.5.2. ROS Packages Used

3.5.2.1. ROS Turtlebot Packages

Turtlebot 3 is a popular generic readymade mobile platform base that can be expanded to con-
nect various sensors and actuators making it perfect for prototyping and testing applications.
Turtlebot line of mobile bases enjoy a very large community support and simulation pack-
ages made available by the manufacturer because of their massive popularity. The available
simulation packages are used in this project to simulate a mobile robot in a 3D environment.
The wide range of available environments eased our testing.

For the simulation of our code in ROS we used few available nodes, configuration files,
software models, libraries etc from turtlebot3 packages. For this project we used turtlebot3,
turtlebot3 msgs and turtlebot3 simulations packages. First of all we used the turtlebot3 pack-
age for launching robot model “burger” and an environment space having some obstacles to
navigate our robot. Then we used a turtlebot3 teleop keyboard package that helped us to
move our robot in the launched environment that created a cmd velocity node. This node
publishes the linear and angular velocity of the robot.

3.5.2.2. Gazebo

Gazebo is a 3D simulator tool for testing algorithms, designing robots, performing regression
testing and many more. Here we used this tool to launch our robot model in a predefined en-
vironment and simulate the robot’s movement by launching a teleop keyboard launch file in
ROS. Gazebo also publishes the laser scan data which was then subscribed by our subscriber
node whose call back function passes the data to other functions for updating the maps.

3.5.2.3. RVIZ

Rviz is a ROS graphical interface for visualizing a lot of information, using plugins for
available topics. We used rviz in our project to visualize the particles and updated maps
published by the publisher. Here we selected two topics that are being published by the
publisher node we created and visualized them using necessary plugins. One is particles for
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generating the point clouds of particles and the other is MAP for viewing our environment
seen through laser scan.

3.5.2.4. Minor

Minor is a custom package created to run the nodes that subscribe the laser scan data from
the Gazebo and then process it using the devised SLAM algorithm and finally publish the
particles and occupancy grid map for Rviz.

3.5.3. ROS Nodes Running

Figure 11: All the nodes currently in ROS

3.5.3.1. Turltebot3 teleop keyboard

The turtlebot teleop key provides a generic keyboard teleop node. This node takes input
from the keyboard for the movement of the robot in 4 directions w, a, x and d and s for stop
then publishes the cmd vel topic which is then subscribed by gazebo node. The msgs pub-
lished by this node are geometry msgs/Vector3 linear and geometry msgs/Vector3 angular
which are the output command velocity to the robot.

3.5.3.2. Static transform publisher 1613799288314868344

Transform(tf) is a package that lets the user keep track of multiple coordinate frames over
time. It maintains the relationship between coordinate frames in a tree structure buffered in
time, and lets the user transform points, vectors, etc between any two coordinate frames at
any desired point in time. The static transform publisher publishes a static coordinate trans-
form to tf using an x/y/z offset in meters and yaw/pitch/roll in radians. Here this publisher is
used for transforming the map coordinate frames to map1 coordinates.

3.5.3.3. Gazebo gui

The Gazebo GUI overlay can be thought of as a transparent 2D layer that sits on top of the
render window. It’s simply a simulating interface where ROS serves as the interface for the
robot.
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3.5.3.4. Gazebo

This node publishes a scan topic that gives laser scan data from the robot which is then sub-
scribed by the minor node. Gazebo also subscribes to cmd vel published by the teleop keyboard
and thus controls the motion of the robot in the simulation accordingly.

3.5.3.5. Minor

This node subscribes to the laser scan data under the scan topic and updates the robot location
and map accordingly based on our SLAM algorithm. The updated map and position is
published under map and particles topics respectively.

3.5.3.6. Rviz 1613836581962690003

This node subscribes to the map and particles topics published by minor node and displays
them in the Rviz gui immediately and hence gives the real time visualization of our output.
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4. EXPERIMENTAL RESULTS

4.1. Tiny SLAM with the provided data set

At the very beginning, we ran the tiny slam algorithm by using the data set provided in the
BreezySLAM repository. For this, we modified BreezySLAM’s program code to generate
maps that were created at every step from each scan data. This was done in order to get a
good grasp of the internal workings of BreezySLAM as well as to be familiar with the tool
chain (e.g. compilers, debuggers, build environments etc.).
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Figure 12: Steps of map generation from default data set

Once we were familiar with the BreezySLAM, we utilized BreezySLAM using the data
set that was generated by the TurtleBot3 simulation in ROS. We also verified the various
parameters of the laser range finder that the TurtleBot3 was using i.e, of LDS-01.
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Figure 13: 3D simulation environment
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Figure 14: Steps of map generation from laser data of Gazebo environment

4.2. Improved Tiny SLAM (Low variance for position search)

Once the particle filter wrapper for Tiny SLAM was ready, we re conducted the above exper-
iment using the same TurtleBot3 data. The variance parameters for running the Tiny SLAM
were given low values of position variance of 45 and orientation variance of 2. Because of
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these low variances the observed map was found to be quite inaccurate.

Figure 15: Maps generated by Improved Low Variance Tiny SLAM

4.3. Improved Tiny SLAM (High variance for position search)

We realized that when the variance parameter was increased, the quality of map increased.
The low value of variance of the robot position that was given when searching for the best
estimated position of the particle corresponded to the inaccurate maps. This value of the
orientation variance was increased to 20 with the result of increased accuracy. The resulting
maps were much better in terms of accuracy.
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Figure 16: Maps generated by Improved High Variance Tiny SLAM

4.4. Real-Time Improved Tiny SLAM

After successfully finding the appropriate parameters, a platform for visualization of the
position estimate and map estimate in ROS was completed. Then the whole system was
run with a real-time visualization of the updated map, where we were able to directly read
data from the Gazebo environment and use that data for performing SLAM and visualize the
immediate output in Rviz environment. The resulting observations are as shown below:
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Figure 17: Maps generated by Real-time Improved Tiny SLAM
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5. CONCLUSION

In this report, we presented an improved form of Tiny SLAM by adding a wrapper of particle
filter above it to increase the quality of map produced. The increase in quality however came
with a cost of increased computational complexity. We experimented with various numbers
of particles to find the sweet spot between the map quality and increased computation and
found that around 10 particles match the criteria. This improved Tiny SLAM was compiled
as a ROS package for the ease of implementation and visualization of output. A method for
experimentation and visualization of the output was also devised.
The quality of the produced map also depends on the variance parameters of the random po-
sition selector for the Random Hill Climbing Algorithm for the best position approximation.
These variance parameters, namely: xy variance (σxy) and theta variance (σθ), were tweaked
and fine tuned. Initially σxy and σθ was kept low with value of 15 and 2 respectively. This
resulted in maps being disoriented with each iteration and looking like layered after rotating
by a certain angle. As the variance was increased, the map quality also increased finally
settling to a value of σθ = 20. The role of variance is that it gives the width of probable
random values for the next best position approximate. In case of low variances, this width
is reduced and if the robot motion and change in orientation is greater than 3 times the vari-
ance then it is highly unlikely that the next random value chosen will be near the new actual
position and orientation, even after a 1000 iterations. Thus increasing the variance increases
the map quality as the probability of the next best position approximate being correct in-
creases. Thus, the application of the particle filter over Tiny SLAM and setting its variance
parameters σxy = 45 and σθ = 2. increases the performance of the Tiny SLAM.
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6. LIMITATION

There are certain limitations to this work. First of all, the robot motion in the experimental
setup does not incorporate any sorts of control measures making it prone to the effect of
inertia, especially when the speed of robot motion is high. As this introduces unwanted
robot motion and unwanted sensor data and that also at a high speed, this affects the updated
map introducing error in the map orientation. Also some of the grid cells beyond an occupied
cell are allocated as unoccupied instead of unknown occupancy. The updated map shows a
positional error whenever the robot hits hard on any obstacle due to the jerk introduced.

Figure 18: Distorted map due to sudden move
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7. FUTURE ENHANCEMENTS

This project though complete in itself, has not been implemented in a physical hardware. As
for the further development, this project can be implemented to a mobile robot in a physical
environment addressing its issues. Next, the enhancement can be done by replacing the
RMHC algorithm for best position approximation with a better optimization algorithm like
particle filter or EKF. To increase the accuracy of laser scans, a better LIDAR like Hokuyo
LIDARs, RP LIDAR etc.
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